14 research outputs found

    Structure of Defective Crystals at Finite Temperatures: A Quasi-Harmonic Lattice Dynamics Approach

    Get PDF
    In this paper we extend the classical method of lattice dynamics to defective crystals with partial symmetries. We start by a nominal defect configuration and first relax it statically. Having the static equilibrium configuration, we use a quasiharmonic lattice dynamics approach to approximate the free energy. Finally, the defect structure at a finite temperature is obtained by minimizing the approximate Helmholtz free energy. For higher temperatures we take the relaxed configuration at a lower temperature as the reference configuration. This method can be used to semi-analytically study the structure of defects at low but non-zero temperatures, where molecular dynamics cannot be used. As an example, we obtain the finite temperature structure of two 180^o domain walls in a 2-D lattice of interacting dipoles. We dynamically relax both the position and polarization vectors. In particular, we show that increasing temperature the domain wall thicknesses increase

    On the existence of chaotic circumferential waves in spinning disks

    Full text link
    We use a third-order perturbation theory and Melnikov's method to prove the existence of chaos in spinning circular disks subject to a lateral point load. We show that the emergence of transverse homoclinic and heteroclinic points respectively lead to a random reversal in the traveling direction of circumferential waves and a random phase shift of magnitude π\pi for both forward and backward wave components. These long-term phenomena occur in imperfect low-speed disks sufficiently far from fundamental resonances.Comment: 8 pages, 5 figures, to appear in CHAOS (Volume 17, Issue 2, June 2007

    Geometric discretization schemes and differential complexes for elasticity

    Get PDF
    In this research, we study two different geometric approaches, namely, the discrete exterior calculus and differential complexes, for developing numerical schemes for linear and nonlinear elasticity. Using some ideas from discrete exterior calculus (DEC), we present a geometric discretization scheme for incompressible linearized elasticity. After characterizing the configuration manifold of volume- preserving discrete deformations, we use Hamilton’s principle on this configuration manifold. The discrete Euler-Lagrange equations are obtained without using Lagrange multipliers. The main difference between our approach and the mixed finite element formulations is that we simultaneously use three different discrete spaces for the displacement field. We test the efficiency and robustness of this geometric scheme using some numerical examples. In particular, we do not see any volume locking and/or checkerboarding of pressure in our numerical examples. This suggests that our choice of discrete solution spaces is compatible. On the other hand, it has been observed that the linear elastostatics complex can be used to find very efficient numerical schemes. We use some geometric techniques to obtain differential complexes for nonlinear elastostatics. In particular, by introducing stress functions for the Cauchy and the second Piola-Kirchhoff stress tensors, we show that 2D and 3D nonlinear elastostatics admit separate kinematic and kinetic complexes. We show that stress functions corresponding to the first Piola-Kirchhoff stress tensor allow us to write a complex for 3D nonlinear elastostatics that similar to the complex of 3D linear elastostatics contains both the kinematics an kinetics of motion. We study linear and nonlinear compatibility equations for curved ambient spaces and motions of surfaces in R3. We also study the relationship between the linear elastostatics complex and the de Rham complex. The geometric approach presented in this research is crucial for understanding connections between linear and nonlinear elastostatics and the Hodge Laplacian, which can enable one to convert numerical schemes of the Hodge Laplacian to those for linear and possibly nonlinear elastostatics.Ph.D
    corecore